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INTRODUCTION

In this report, three coding schemes designed for improved data communi-

cation are evaluated. In Part A, four block codes are evaluated relative to

a quality function, which is a function of both the amount of data rejected

and the error rate.

Part B is an evaluation of the Viterbi Maximum Likelihood Decoding Al-

gorithm as a decoding procedure. This evaluation is obtained by simulating

the system on a digital computer.

In Part C, Short Constraint Length Rate 1/2 'Quick-Look' Codes are

studied, and their performance is compared to general nonsystematic codes.
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PERFORMANCE OF BLOCK CODES

I. Introduction:

Although the use of error control coding techniques in digital space com-

munication systems has become fairly routine in recent years, there still exists

a great deal of uncertainty as .to the actual effectiveness of coding in achieving

more reliable communication. The reason for this is to be found in the fact that

the commonly used performance parameters do not take into account all the perti-

nent aspects of the coded transmission system. Thus, for example, the widely

used Probability of Word Error criterion totally ignores the possibility that

the decoder may incorporate some degree of data rejection. Likewise, the mini-

mum distance criterion, another popular measure of code performance, is com-

pletely independent of the decoding algorithm and several other important system

factors.

As a consequence of this state of affairs, it is virtually impossible to

compare, say, a coding system with error correction and data rejection to one

with error correction alone, using any of the existing criteria of performance,

and it is therefore of value to define and evaluate measures which incorporate

most, if not all, of the quantities affecting the overall system reliability.

This is the objective of the present work.

II. Definition of Performance Measure:

For the simple types of block codes normally employed in space communi-

cation systems, the complexity of the encoder and decoder is of little conse-

quence, since the use of integrated circuit technology allows the construction

of the basic components in an inexpensive fashion. Furthermore, the complexity

is essentially independent of the particular code-decoder used.
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The processing speed is generally a function of the type of logic used and

the technology in the construction of the integrated circuits. Although one

could probably obtain cost figures as a function of processing speed, the im-

portance of these costs in the overall system considerations is difficult to

assess. Also, as with complexity, processing speed is not a strong function

of the code-decoder combination.

Thus, the important factors determining the overall coding system perform-

ance are:

1. The accuracy of the data after decoding,

2. The amount of data rejected by the decoder,

3. The amount of redundancy in the code, and

4. The relative importance of data accuracy, data
rejection, and data transmission rate.

Let us consider a situation in which N blocks of received digits from a

binary (n, k) block code are to be decoded. The decoder generally rejects N-X

blocks, leaving X blocks after decoding, of which Y are correct. (See Figure 1)

N-X BLOCKS REJECTED

N BLOCKS BLOCKS
DECODER

Y CORRECT BLOCKS

FIGURE 1. GENERAL DECODER CONFIGURATION

The amount of data passed by the decoder is measured by the quantity

F1 E{X}
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the accuracy of the data after decoding is measured by the quantity

E{Y}
2 = E{ '

and the amount of redundancy in the code is measured by the quantity

k _ number of data digits per block
3 n total number of digits per block

Here E is the usual expectation operator.

We also define a quantity 0 s a : 1 which measures the relative importance

of data accuracy and data rejection.

As an overall measure of performance of the code-decoder combination, we

then take quantity

F = 1 - F F 2 (1-U)

as a function of the energy per information bit-to-noise ratio, Eb/No.

When the N blocks are transmitted independently of each other and are

treated as such by the decoder, 1 - F reduces to the probability of word rejec-

tion. For a decoder with no data rejection, F2 becomes the probability of cor-

rect decoding. Thus, in the two limiting cases a = 0 and a = 1, F reduces to

the probability of word error and word rejection, respectively.

III. Evaluation of F for Hamming Type Block Codes Over the Binary Symmetric
Channel:

We assume that N blocks are transmitted independently and with equal pro-

bability over a binary symmetric channel whose digit error probability is

p = 1-q. The codes of interest are of two types: The standard (n, k) Hamming

code described by the parity check matrix
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0 0 . . 1

0 0 1

H=

0 1 1

0 0 . . . 1

whose columns are all 2m - 1 nonzero binary m-tuples (m any integer greater

than 2), and a modified Hamming code whose parity check matrix differs from

the above only in having an additional row of ones on top. The first code has

block length n = 2m - 1, k = n-m information digits and minimum distance 3

and is thus able to correct all single errors. The second code has the same

block length, k = n - m - 1 and minimum distance 4 and can be decoded in either

a single-error-correcting, double-error-detecting mode or a triple-error-

detecting mode.

For both codes, the first step in decoding a received block v = (vl, v2,

vn) consists of determining its syndrome. This is a binary (n-k)-tuple

given by

s = vHT

where T denotes matrix transposition and the multiplication and addition opera-

tions are modulo 2.

We now consider four cases, including, for purposes of comparison, the

uncoded transmission of data blocks of length n.

Case 1. No Coding - (n, n) Code

Decoding Rule: Pass every block unchanged

Evidently, X = E{X} = N and since a block is correct at the

decoder output if and only if it is correct at the input, we

have E{Y} = N n
q

5



Hence Fl = 1; F2 = qn

and

F = 1 - q(a)

Since F3 = 1, the relation between the channel error probability

p and Eb/N is p = - erf Eb/N

Case 2. Single-Error-Correcting Hamming Code

Decoding Rule: If the syndrome is zero, pass the block. If

the syndrome is not equal to zero, assume a single error has

occurred, correct it, and then pass the block.

Again, E{X} = N. For E{Y} we have

E{Y} = N{Probability that a block has no error or a

single error before decoding)

= N{q + nq.- p

k n n-1
Therefore, F = F = 1, F= q + nq p

and

F = - (qn + nqn-)

where p = - erf 2k/n Eb/N

Case 3. Single-Error-Correcting, Double-Error-Detecting Hamming Code

Decoding Rule: If the syndrome is zero, pass the block. If

the first digit and at least one of the remaining digits in the

syndrome are one, assume a single error has occurred, correct

it, and then pass the block. For all other syndromes, reject

the block.

k-1
We have F =-k

3 n
6



E{X}
F1  --- = {Probability that a block has zero syndrome

or the first and at least one of the remaining

digits equal one}
n-1

= {A2i qn- 2 i p2i + [(2 i
n + 1) - A + n-2i 1 2i + I

i=O

where A. is the number of codewords of weight j of the Single-
J

Error-Correcting Hamming Code,

and for F2 we obtain

E{Y} 1
F = I = {Probability that a received block is correct

or has a single error}

Case 4. Triple-Error-Detecting Hamming Code

Decoding Rule: If the syndrome is zero, pass the block. Other-

wise, reject the block.

k-1
Here, F - ,

3 n

F1  E = {Probability that a block has zero syndrome}1 - N

n-1

2 A n-2i 2i
= A2i q

and

SE{Y} qn

F2  i E{ F2

The Hamming code weight spectra required for Cases 3 and 4 may be obtained

as the coefficients of the polynomial.
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n-1 n+1

f(x) = ~ {(+x)n + n(1+x) 2 (1-x) 2
n+1

where A. is the coefficient of x

IV. Evaluating the Performance Criterion:

A Fortran language program, reproduced in Appendix A, was written to evaluate

the function F for the four cases described above. The program calculates F for

101 equally spaced values of Eb/No ranging from 2 db to 10 db and all values of

redundancy from m = 3 to m = 10.

A major part of the program is devoted to calculating the coefficients of

the function

n-I n+1

f(X) = ((1+X)n + n(1+X) 2 (I-X) 2)
n+1

which are used in Cases 3 and 4. The main difficulty in this computation is

that some of them have magnitudes on the order of 10300 for large values of n.

Overflow on the IBM 370 occurs with numbers as small as 10 To overcome this

problem, most calculations are done using logarithms. Thus, for example, the

logarithms of the coefficients of (1+X)n are stored in an array called LGCOEF.

Similarly, the components of (1+X) n- 1/ 2 and (1+X)n+ 1/2 are stored in LCNM1 and

LCNP1, respectively. Note that LCNP1 contains the logarithms of the coeffi-

cients of (1+X)n+1/ 2 and not (1-X)n+1/2, since the latter has negative coeffi-

cients whose logarithms do not exist. The variable SIGN, which always equals

+1, is used to convert the coefficients of (1+X)n-1/2 to the coefficients of

(I-X) n+ 1/2 when making calculations of f(X).

A special procedure is used throughout the program to achieve addition

of these very large numbers. Obviously this addition cannot be achieved di-

rectly using logarithms. To illustrate this procedure consider adding the

numbers A = 7.3147 x 10298 and B = 2.1532 x 10295 given the logarithms of these

numbers.
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ALOG = log(A) = 298.864196 = 3.864196 + 295.

BLOG = log(B) = 295.333084 = 0.333084 + 295.

Let Z = X+Y and ZLOG = log(Z).

ZLOG = log(103.8 6 4 196 + 100.333084) + 295

= log(7314.7 + 2.1532) + 295

= log(7316.8532) + 295

= 3.864324 + 295

= 298.864324

Thus, the log of the sum has been calculated using numbers no bigger than

7316.8532. Since the calculations on the IBM 370 have only 16 significant

figures, numbers whose magnitudes differ by more than 1016 are not added by

the above method. In this case the sum is set equal to the larger of the

two numbers.

The coefficients of f(X) are calculated using the aforementioned tech-

niques and stored in an array called RIGHT. The variable RINOM is set equal

to the logs of certain binomial coefficients, and it is used in calculating

terms of F1CAS3 (F1 for Case 3; i.e., F1 for SEC-DED) of the form

(( )  - A )qn-i i
I I

These terms are stored in COEFC3.

In order to calculate the parameters for each case for any particular

value of S/N, values for q and p, which are dependent on the code rate, must

be evaluated. The dependence on code rate requires calculations of QI and P1,

Q2 and P2, and Q3 and P3 for use with Cases 1, 2, and 3 and 4 respectively.

Since Case 4 has the same code rate as Case 3, Q3 and P3 are applicable to both.

IV. Numerical Results and Conclusions:

In Figures 2-49, we have plotted the performance measure F as a function

of the signal-to-noise ratio Eb/NO of the binary symmetric channel in db, for

9
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all four cases .described above, and for n = 7, 15, 31, 63, 127, 255, 511, 1023,

and a = 0, 0.1, 0.3, 0.5, 0.8, 1.0. We draw the following conclusions. For

the extreme values of alpha the relative importance of each case remains fixed

for all values of Eb/N . When a = 0, Indicating an interest only in the quality

of the output, the relative ratings from best to worst are: TED, SEC-DED, SEC,

No coding. As expected, when a = 1, indicating an interest only in the quantity

of output data, the relative ratings are just opposite to the a = 0 cases. For

a = .5 and n z 15, the relative order also remains fixed: SEC, SEC-DED, No

coding, TED. Notice that the extreme cases of large quantity of output achiev-

able with no coding and high quality of output achievable with a TEC system

are both given poor relative ratings for this value of alpha showing no pre-

ference of quantity over quality or vice-versa. Also, for a = .5 n = 7, no

coding becomes preferable to SEC-DED at signal-to-noise ratios below 4.1 db.

This would be due to the increased data rejection by a SEC-DED decoder as the

noise becomes greater.

A preference for quality over quantity without total disinterest in the

latter is explored by the a = .1 and a = .3 cases. No coding for these values

of alpha is never preferable to any other of the choices considered except TED.

As S/N increases TED becomes relatively less desirable as triple errors become

less likely and its low transmission rate becomes dominant. Similarly, as

Eb/No increases SEC-DED becomes less important than just SEC. However, as the

block size increases, TED and SEC-DED become more important since the proba-

bilities of the errors these decoders are designed to correct increase.

Finally, when quantity is somewhat preferred over quality as with a = .8,

as might be expected the relatively extreme quality achieved by TED is shown

to be undesirable for all values of S/N tested since this quality is achieved

at the expense of quantity. The SEC decoder which employs no data rejection

yet achieves some degree of error correction is found to be the best of all
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four cases for all values of Eb/No considered. At very low noise levels the

error correcting properties of SEC-DED make it more desirable than no coding,

while at high noise levels the data-rejection of SEC-DED make it less de-

sirable than no coding. For example, for n = 1023, SEC-DED is preferable to

no coding for Eb/No from 4.4 to 6.9 db.

More insight into the nature of this function can be gained by looking

at what is necessary to achieve a desired level of effectiveness. A typical

example is shown in Table 1. Here the desired value of F is set at .01.

With no coding or SEC, a higher value of Eb/N is required as quality becomes

more preferable. However, with SEC-DED or TED a lower value of E b/N is re-

quired to achieve the same value of F as emphasis is switched to quantity.

Eb/No IN DB REQUIRED TO

ACHIEVE F = .01 FOR n = 255

Alpha No Coding SEC SEC-DED TED

.1 8.88 7.36 6.64 7.68

.3 8.72 7.20 6.88 8.40

.5 8.56 7.04 7.12 8.72

.8 8.00 6.64 7.28 8.96

TABLE 1
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DIGITAL SIMULATION OF THE VITERBI
MAXIMUM LIKELIHOOD DECODING ALGORITHM

I. Introduction:

The Viterbi algorithm is a method for determining the most likely sequence

of states of a time-discreet Markov process; and, as such it is an optimal

method for decoding convolutional codes. An evaluation of the effectiveness

of this algorithm as a decoding method is accomplished herein through simula-

tion on an IBM 370 computer using a main program written in the Fortran lan-

guage and three subroutines written in Assembler language.

II. The Simulation Procedure:

A block diagram of the simulation is shown in Figure 50. A pseudo-random

number generator is used to independently generate binary source bits of equal

probability and binary noise bits whose probabilities depend on the assumed

channel characteristics. The source bits are encoded with the appropriate

parity check bits in blocks of two. Each bit is added to a noise bit using

modulo-2 arithmetic (simulating channel noise). The information noise bits

and parity check noise bits are generated independently. The corrupted bits

are then decoded using the Viterbi algorithm. Accuracy of the decoding al-

gorithm is measured as

E = limit En = (Number of correct information bits)/(Total bits)
n - c

where En is the ratio after information bits have

been transmitted.

III. The Viterbi Algorithm:

Given an observed output sequence Z = (z1 , z2' . , zk), the purpose of

the Viterbi algorithm is to determine the most likely input sequence X = (x0o
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xI , . . . , Xk). The subscripts refer to the discreet time states. Since the

process is assumed to be Markov, the probability of state xi+ I depends only on

the state x.:
I

i.e., Pr(xi+1 Xo, xl, . . . , x.) = Pr(x i+1  i).

The channel is assumed to be memoryless so that the observed output z. at time

i depends only on the transition from state x. to state x. This transition

is symbolized as ti. We want to determine the maximum a posteriori Pr(X, Z).

Because of the aforementioned Markov and memoryless assumptions:

Pr(X, Z) = Pr(X)Pr(ZIX)

k-1 k-1
= T Pr(xi+1 x ) 7 Pr(z.ilti)

i=0 i=0

The Viterbi algorithm is a method of determining the shortest path be-

tween two points. We, therefore, assign a 'path length' between each pair

of possible states from time = i to time = i + 1. This length lambda(ti) is

defined as

lambda(t i) = -In Pr(xi+1Ix ) - In Pr(zilti).

The total length for some input sequence X would be

k-1
-In Pr(X, Z) = E lambda(ti)

i=O

Since path length is a negative logarithm of the probability, the shortest

(critical) path length between two points (i.e., the initial and final states)

would be the one with the highest probability. This is the maximum a posteriori

probability we are seeking. The Viterbi method of finding this critical path

is based on the observation that at any given time i, each state x. has associated

with it a shortest path to the initial state. This shortest sequence is called

a survivor, designated X(xi). The path length of survivor X(xi) is designated
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gamma (x ). Extending these survivors to time i + 1 requires merely adding

the appropriate digit ("bit" for our purposes) to theexisting survivor and

adding the corresponding path length gamma (xi+1, x ) for comparison purposes

in determining the survivors for each state at time i + 1. At the end of the

sequence (time = k) the survivor corresponding to the state with the shortest

survivor path length is optimal.

For the purpose of convolutional code decoding, the states correspond to

the possible binary state permutations of a block of m shift registers. As-

suming that for the source Pr(O) = Pr(1) = 1, it follows that for all possible

transitions between states the term Pr(xi+ 1 xi) = 1; and, since it is a con-

stant for all possible transitions, it may be ignored when calculating the

optimal path. Thus, only the term Pr(ziti) is significant. For systematic

codes, the observation z i corresponds to both the information bit and the parity

bit received as a block at time = i. For non-systematic codes, z i corresponds

to a block containing a parity bit for each subgenerator polynomial. These

probabilities are pre-calculated for each state and each possible received

block before decoding begins.

Since we are concerned with a communications system with a semi-infinite

number of bits transmitted, corresponding to a semi-infinite sequence, and

since storing the resulting semi-infinite survivors is impractical, a limit

must be placed on the number of bits stored as a survivor (i.e., the survivor

length). Call this limit delta. Thus, at time = i, a decision must be made

concerning the bit at time = i - delta (i minus delta). This survivor trans-

action becomes insignificant for delta large enough because survivors tend

to converge to the same state nodes.
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IV. The Simulation Program for Rate I Codes:

A Fortran language main program was used in conjunction with three custom

written Assembler language subroutines. The main thing to be aware of when

using the program is that the delta defined in the program is one greater than

the corresponding delta as defined in the Viterbi algorithm (e.g., if you wish

to get results for delta = 75, set delta = 76 in this program!). For each

state at time i there are two possible states to which it can branch at time

i + 1 (one of which has an incoming 0 bit, the other has an incoming 1 bit).

These possible transitions are stored in an array called NEXT. NEXT(I,1) cor-

responds to the branch of state I with an incoming 0; whereas, NEXT(1,2) cor-

responds to an incoming 1.

Probabilities which determine the path lengths are calculated prior to

the main iterative loop. These calculations are done for all four possible

two bit permutations corresponding to a received block containing an informa-

tion bit and a parity check bit in the systematic case, or two parity check

bits in the non-systematic case. Array POFZLN stores these predetermined

path lengths. Thus in the main iterative loop the increase in the total path

length GAMMA of each state can be determined by a simple table reference

(i.e., POFZLN). Survivors are stored and saved by arrays SURVIV and SAVUR,

while the corresponding path lengths are saved using arrays GAMMA and SAVE.

The appropriate subgenerator vectors are stored in the array GEN. In

the case of a systematic code the second subgenerator is a 1 followed by m - 1

zeros. For example, the subgenerators for an m = 5 systematic code would be:

10000 and 11011. Note that the subgenerator 10000 merely generates the in-

formation bit. SHIFT2 saves the contents of the simulated encoding shift

registers.
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All random bit generation is done independently for each application.

Source bits of equal probability are generated using a Scientific Subroutine

Package member called RANDU. These source bits are stored in PRSOUR. The

generated noise bits (Pr(O) = q) are stored in PNOISE. Decoded bits are stored

in PROUT for comparison with the original source bits in PRSOUR.

Many different counters are used to keep track of time states corresponding

to source bits, noise bits, and output bits. IOUT determines the printed in-

crements for En.  During the course of this research, IOUT was set equal to

1000 so that the accuracy En was printed out for n = 1000, 2000, 3000, etc.

The n refers to the number of decoded bits and is called NDECOD within the

program.

Read and punch statements are included to save the information necessary

to restart the program where it left off. This feature is desirable to enable

the programmer to check the convergence of the accuracy figures and compare

them with other data in order to determine the desirability of decoding a

greater number of bits. However, due to the fact that hexadecimal double

precision accuracy used by the IBM 370 computer is equivalent to about 16.7

decimal digits, and the data cards are punched with decimal numbers, there is

a slight loss in accuracy that is sometimes noticeable but generally insignificant.

Three Assembler languages subroutines were written to expedite the execu-

tion of the program. These are COPYAR, SHIFT, and TESTBT. COPYAR simply copies

SAVSUR into SURVIV. SHIFT is used to shift the survivor of a row in SURVIV,

add a 0 or a 1, and transfer the resulting survivor to the row specified by

NEXT in the array SAVSUR for the next time increment. TESTBT determines whether

the bit at time = k - delta (Viterbi definition of delta) is a 0 or a 1 in the

survivor of the current state whose total path length is the least.
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Typical decoding rates are shown in Table 2. The number of bits refers to

the total number of both parity and information bits. To obtain the number of

information bits decoded per second, multiply the rates shown in Table 2 by the

code rate, which in all cases explored here is . Note that decoding an m = 7

code is approximately twice as slow as decoding an m = 6 code since the latter

has half the possible states of the former.

TYPICAL DECODING RATES

M delta bits/sec

5 31 578

5 52 506

6 31 324

6 59 275

7 27 165

7 59 145

TABLE 2

V. Program for Simulating A Viterbi Decoder
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Read: MAXBIT, N, M,
NROWS, NCOL, GEN(M),
DELTA, STON, NXMTD,
IXSOUR, IXNOIS(N).
Define: N2, K, K2,
DELMI, IDEPTH, IDEPCP,
IBIT, MAXDEC, NSTATE,
0.

Determine the two
branches for each
state: i.e.,
NEXT(I,1),
NXT (IT .2).

Print initial values
of IXSOUR and IXNOIS.

No
NXMTD = 0?

Yes

Initialize: ERRORS, Read: ERRORS,
NTOTAL, NCOUNT, NTOTAL,
NDECOD, PARCK(N), PNOISE(NCOUNT,N),
SHIFT2(M), PRSOUR(NCOUNT),
GAMMA (NSTATE), PARCK (N),
SURVIV(NSTATE,NCOL). GAMMA(NSTATE)

SURVIV(IDEPCP,NCOL),
SHIFT2(M).

Define IO'T.
Initialize NPLOT.
Print STON and Q.
Establish P with a
lower limit of
l.D-75.
Define: QLN, PLN.

Calculate POFZLN.
This array contains the
predetermined branch
lengths based on the
probability that a
given state is correct
for the block of bits
received. i.e.,
POFZLN(I,LOC) contains
the probability, ex-
pressed as a path length
that state I is correct
for block number LOC
which can be any of 2**N
permutations.

x
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X

SCall random number
generator and generate
a source bit.

Increment: NXMTD,

Store source bit in

Shift source bit into

Generate parity bits.

Add noise.

Determine the location
LOC in POFZLN corres-
ponding to the block
of corrupted parity
bits.

For each pair of states
at time = NXMTD:
Determine GAMCHK at
time NXMTD-1.
Determine and save
GAMMA in array SAVE
for state at time
NXMTD.
Save new survivors in
SAVSUR at time
NXMTD.

Determine the state
IMIN which has the
shortest overall
path length.
Determine GAMMAX,
the maximum
stored overall
Path length.

Reduce all lues of
5 No Gamma by 10

GAMMAX<1050

Yes
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Y

Call COPYAR to copy
SAVSUR into SURVIV.

No
NDECOD<0?

Yes
Call TESTBT to make
a final decision on
the bit at time
NXMTD-(DELTA-1)
based on survivor.
of state IMIN.
Store this bit
in PROUT.

Increment NDECOD and

No

XMTD>MAXDEC?
No NDECOD

>IOUT Yes

Yes Set IOUT =
NDECOD-1

Increment NPLOT

Determine cumulative
number of noise bits
on each block bit
corresponding to
TOTAL information

bits using PNOISE
and store in PARCK.

Determine total errors
for the decoded bits
by comparing PROUT
to PRSOUR.

Z A
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z A

Reset
NCOUNT =
DELM1
and
NDECOD = IDetermine current
1. I accuracy and store

ln FPLOT

Transfer
last
DELM1
source
into Store noise counts
first lin PNPLOT,
DELMI
positions
of
PR OUR.

Store NTOTAL in
XMT P LT .

Transfer No
last DELM1
noise bitsa XMTD>MAXDEC?
into first
DELMI
positions Yes
of
PNOISE.

Print: M, GEN, DELTA,
table headings, bits,
accuracy, noise.

Punch data for restart.
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C PROGRAM FOR SIMULATING A VITERBI DECODER
C
C
C FOR STORAGE REASONS DELTA IN THIS PROGRAM SHOULD BE SET TO ONE MORE
C THAN THE CASE BEING SIMULATED.
C I.E. TO SIMULATE DELTA=13, SET DELTA=14.
C THE FOLLOWING MINIMUM ARRAY DIMENSIONS MUST BE ALLOCATED:
C PNOISE (IOUT+DELTA,N)
C PRSOUR (IOUT+DELTA)
C PROUT ITOUT)
C PNPLOT (IOUTN)
C GEN (MN)
C SHIFT2 (M)
C L (M)
C NEXT (NSTATE,2)
C PAR (N)
C OUTPUT (N)
C XMTPLT (NUMBER OF LINES PRINTED=(NUMBER OF INFORMATION
C BITS DECODED THIS RUN/IOUT))
C FPLOT (SAME AS XMTPLT)
C PARCK (N)
C POFZLN (NSTATEN2=2**N)
C GAMMA (NSTATE)
C SAVE (NSTATE)
C IXNOIS (N)
C
C
C
C
C SURVIV AND SAVSUR MUST BE DIMENSIONED EXACTLY (NROWSNCOL) WHERE
C NROWS MUST BE AT LEAST 2**M AND NCOL MUST BE AT LEAST IDEPTH
C
C
C

INTEGER PARSUM
INTEGER*2 PNOISE(1064,3),PRSOUR(10)64)

INTEGER GAMCHKTEST
INTEGER*2 PROUT(1000)
INTEGER PNPLDT(1t0,3)
INTEGER*2 GEN(8,3),SHIFT2(8),JKL, IOUT,M,K2,DELTADELTAl
INTEGER*2 DELM1,NSTATEL(8),LR,NEXT(256,2),PAR(3),PARITY
INTEGER*2 OUTPUT(3),LOCtSOURCE
INTEGER SURVIV(256,2),SAVSUR(256,2)
INTEGER XMTPLT(1000)
INTEGER PARCK(3)
REAL*8 POFZLN(256,4),GAMMA(256),SAVE(256)
REAL*8 FPLOT(100)
INTEGER NTOTAL,ERRORS,NPLOTNCOUNT,NDECOD,NXMTD,MAXBIT,IXNOIS(3)
REAL*8 QP,DFLOAT,STONDERF,DSQRTQLN,PLN
REAL*8 DLOG,GAMMINGAMMAX

C MNPLOT AND PNPLOT STORE INFO AND PARITY NOISE COUNTS RESPECTIVELY
C MAXBIT IS THE MAXIMUM NUMBER OF BITS TO BE XMTD

READ1104,MAXBIT
1104 FORMAT(IT)
C N IS BLOCK LENGTH

READ1100,N
N2=2**N

C K IS THE NUMBER OF INFORMATION BITS REPRESENTED BY A BLOCK
C OF LENGTH N.
C THIS PROGRAM WILL ONLY SIMULATE CODES OF RATE 1/N.
C THEREFORE K MUST ALWAYS EQUAL 1.
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K=1
K2=2**K

C M IS CONSTRAINT LENGTH
READ1100,M

1100 FORMAT(Il)
READi114,NROWS
READ11'4,NCOL

C GEN IS SURGENERATOR VECTOR
00 1506 J=1,N

1506 READ1102,(GEN(IJ)I=1,M)
1102 FORMAT(911)

PRINT698
698 FORMATi'I',' ')
C DELTA=SURVIVOR LENGTH PLUS ONE

REA0U116,DELTA
1106 FORMAT(I3)
C STOIN IS THE SIGNAL-TO-NOISE RATIO IN DECIBELS.

READ111I8,STON
1108 FORMAT(D15.7)

Q=.50D+.50C*DERF(OSQRT(DFLOAT(K)/DFLOAT(N)*10.DO**(STON/10.DO)))
C . NXMTD=TOTAL SOURCE 3ITS XMTD

READ2.in,NXMTD
20'0C FORMAT(I20)
C IXSOUR AND IXNOIS ARE RANDOM INTEGERS USED AS STARTING
C POINTS FOR THE RANDnM NUMBER GENERATOR.

READ200, IXSOUR
DO 1510 I=1,N

1510 PEAD2Or),IXNOIS(I)
DELM1=DELTA-1

C IDEPTH IS THE NUMHBER OF WORDS REQUIRED TO STORE ONE SURVIVOR.
IDEPTH=DELM1/32+1
IDEPCP=NCOL+1-IDEPTH
IBIT=DELTA-32*(TIEPTH-1)
MAXDEC=MAXBIT+DELM1
NSTATE=2**M
M1=M+1
DO 9 I=1,M

9 L(I)=1
00 16 I=1,NSTATE
DO 11 LR=1,M
IF(L(LR))11,14,11

11 L{LR)=O
GO TO 15

14 L(LR)=l
C NEXT IS AN ARRAY CONTAINING THE NUMBERS CORRESPONDING
C TO THE 2 STATES THAT ANY GIVEN STATE CAN BRANCH TO.
15 NEXT(I,1)=1

DO 30 LM=2,M
30 NEXTII1)=NEXT(II11+2**(LM-2)*LILM)
16 NEXT(I,2)=NEXT(I,1)+2**(M-1)

PRINT1138,IXSOUR
1138 FORMAT('0','IXSOUR=,120)

DO 1139 I=1,N
1139 PRINT1140,IIXNOISiI)
1140 FORMAT('O','IXNOIS',Il,')=',120)

IF(NXMTD.EQ.0)GO TO 1300
REAO2000,ERRORS
READ2000,NTOTAL
NCOUNT=DELM1
NDECOD=1

2001 FORMAT(7211)
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DO 1550 J=1,N
1550 READ2001,(PNOISE(I,J)tl=1,NCOUNT)

READ20I1,tPRSOUR(I),T=l1NCOUNT)
DO 1551 I=I,N

1551 READ200),PARCKl)
DO 13')2 I=1,NSTATE

1302 READ202,GAMMA(I)
2002 FORMAT(D23.16)

DO 1303 I=1,NSTATE
DO 13'3 J=IDEPCP,NCOL

1303 READ2000,SURVIV(I,J)
READ2001,(SHIFT2(1),I=1,M)
GO TO 1301

1300 CONTINUE
C INITIALIZE RANDU SOURCE AND NOISE
C ERRORS=NUMBER OF DECODING ERRORS

ERRORS=O
C NTOTAL=TOTAL BITS PRINTED

NTOTAL=1-DELTA
C NCOUNT PLACES OUTPUT BITS IN CORRECT VECTOR POSITION

NCOUNT=O
C NDECOD=NUMRER OF BITS DECODED

NDECOD=2-DELTA
C PARCK=TOTAL NUMBER OF PRINTED PARITY CHECK BITS CORRUPTED BY NOISE

DO 1552 I=1,N
1552 PARCK(1)=O
C SHIFT2=CONTENTS OF ENCODING SHIFT REGISTER

00 1 I=1,M
1 SHIFT2(I)=O

GAMMA(1)=0.00
DO 60 I=2,NSTATE

60 GAMMA(I)=1.040
DO 61 I=1,NROWS

00 61 J=1,NCOL
61 SURVIV(I,J)=O
1301 CONTINUE
C IOUT=NUMBER OF BITS PRINTED PER LINE

IOUT=1000
C NPLOT COUNTS NUMBER OF TIMES PRINTING ALGORITHM IS USED

NPLOT=0
PRINT998,STON

998 FORMATI'-','S/N =',D15.7)
PRINT704,Q

704 FORMAT('+',T30,t'Q=',D157)
P=I.DO-Q
IF(P.LT.1.D-75)P=1.D-75

QLN=-1.DO*DLOG(0)
PLN=-1.DO*DLOG(P)
DO 49 I=1,M

49 L(I)=l
00 50 I=1,NSTATE
DO 51 LR=I,M
IF(L(LR))51,52,51

51 L(LR)=O
GO TO 53

52 L(LR)=1
53 00 1500 IBITNR=1,N

PARSUM=O
00 20 I1=1,M
IMI=MI-I1

20 PARSUM=PARSUM+GEN(I1,IBITNR)*L(IM1)
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1500 PAR(IBITNR)=PARSUM-PARSUM/2*2
DO 21 13=1,N

21 OUTPUT(I3)=1
DO 50 J=1,N2
DO 55 14=1,N
14MINI=N+1-14
IF(OUTPUT(14MIN1))55,56,55

55 OUTPUT(I4MIN1)=O
GO TO 57

56 OUTPUT(I4MIN1)=1
57 POFZLN(I,J)=O.DO

DO 50 IL77=1,N
IF(OUTPUT(IL77).EQ.PAR(IL77))POFZLN(I,J)=POFZLN(I,J)+QLN

50 IF(OUTPUT(IL77).NE.PAR(IL77))POFZLN(I,J)=POFZLN(I,Ji+PLN
699 CALL RANDU(IXSOURIYSOUR,YSOUR)

IXSOUR=IYSOUR
SOURCE=U
IF(YSOUR-0.5)1511,1512,1512

1512 SOURCE=1
1511 NXMTD=NXMTD+1

NCOUNT=NCOUNT+I
PRSOUR(NCOUNT)=SOURCE
DO 2 I=2,M
I1=M+2-1

2 SHIFT2(Il)=SHIFT2(I1-1)
SHIFT2(1)=SOURCE

C PARITY=PARITY CHECK DIGIT
DO 1516 IBITNR=1,N
PARSUM=O
DO 1517 I1=1,M

1517 PARSUM=PARSUM+GEN(I1,IBITNR)*SHIFT2(I1)
1516 PAR(IBITNR)=PARSUM-PARSUM/2*2

DO 1530 I=1,N
PNOISE(NCOUNT,I)=!
CALL RANDU(IXNOIS(I),IYNOIS,YNOIS)
IXNOIS(I)=IYNOIS
IFIQ-YNOIS)1531,1531,1530

1531 PNOISE(NCOUNT,I)=1
KPAR=PAR(I)
IF(KPAR.EQ.O)PAR(I)=1
IF(KPAR.EQ.1)PAR(I)=O

1530 CONTINUE
C LOC= LOCATION IN PROBABILITY MATRIX CORRESPONDING TO BLOCK RECEIVED

LOC=1
DO 1504 LOCSUM=1,N

1504 LOC=LOC+2**(N-LOCSUM)*PAR(LOCSUM)
C
C
C
C STATES ARE NUMBERED SUCH THAT 1 AND 2, 3 AND 4, ETC. ARE
C PAIRS THAT BRANCH TO THE SAME STATES.
C I.E. OX AND IX BOTH-BRANCH TO XO AND X1, WHERE X REPRESENTS
C A PERMUTATION OF M-1 BITS.
C
C
C GAMCHK IS THE STATE OF GIVEN PAIR OF STATES WHICH HAS THE SHORTEST
C TOTAL PATH LENGTH GAMMA.
C
C
C

DO 100 I=1,NSTATE,2
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GAMCHK~I
IF(CtAMMA( 1) .IT.GAMMA( 1+1) )GAMCHK=I+l
DG 101 J1,vK2

1:)l SAVE(NEXT(1,J))=GAMMA(GAMCHK)+POFZLN(NEXT(t,J),LOC)
IROWC~tcEXT( 1,13
IROW1=N)T( 1,2)
CALL SHIFT(SURVIV,SAVSUR,N'ROWS,NCOL,GAMCHK,IROWC-, I'OWI)

1A CONTINUE
DO 139 1=1,NSTATE

139 GAMMA(1)=StVE(I)
142 GAMMIN=1.D7ki

GAMMAX=-1 .07,o
IMIN=l
00 14^j I=1,NSTATE
IF(G AMMA( I).GT.GAMMAX)GAMMAX=GAMMA( 1)
IF(GAMMA(1).GE.GAMMIN)GO TO 140
GAMMIN=GAMMA( I)
I M I N= I

149 CONJTINUE
155 IF(S4A4MAX.LE.l.D50)GO TO 150

DO 141 I=1,NSTATE
141 GAMMA(1)=GAMMAdI)-l.D5n

GO TO 142
150 CALL COPVAR(SAVSR,SJRVIV,NROWS,'JCOL)

IF(NDECOO.LE. 'iGl TO 715
CALL TESTBT(SURVTV(IMIN,IDEPCP),I81T,TEST)
PROUT (NDECOD)=TEST

715 NDECOO=NOECOD+i
NTOTAL=NTOTAL+l
IF(NXMTO.GE.MAX(DEC)GO TO 750
IF(NDECOD.GT.IOUT)GO TO 710
Gfl TO 699

7')0 CrJT I NUE
.NP LOT= NPL OT 41
00 776 J=1,N
DO 776 I=1,IOUT

776 IF(PNQOISE( IJI.EQ.1)PARCK(J)=PARCK(JlI
DO 77", I=191MOT

771) IF(PRSOURCI).NE.PROUTII))ERRORS=ERRORS+I-
FPLOT(NPLOT)=DFLOAT(NTOTAL-ERRORS3/DFLOAT(NTOTAL)

DO 1561 I=lN
1561 PNPLOT(CNi2LOT 1) =P.4RCK I)

XMTPLT(NPLOT)=NTOTAL
IF(NXMTD.GE.MAXDFC)GO TO 900

DO 778 J=1,N
DO 778 I=1,DELMJ

778 PNOISEC IJV=PNI)ISEC IOUT+I,J)
DO 7,n3 I=1,DELM.

7,')3 PRSOUR I )=pRSOuWC inUT+I)
NC 0(3NT=DEL Ml
NDECOD=l
GO TO 699

750 IOUT=NDECOD-1
GO TO 700

9101 CONT INUE
PRINT50,M

500 FORMATC'-','CONSTRAINT LENGTH='t13)
DO 1565 J=1,N

1565 PRINT511,CGENC [,J) , 11,M)
501 FORMAT('0)','SUBGENERATOR=',10I6)

PRIN TI -01,0 ELTA
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10)1 FORMATI '-' ,'DELTA=', 13)
PRINT602

6tj2 FORMATIOtuI,T2,BITS9,Tl9,UACCURACYI,T379tNl1SE COUNT: BIT1,BIT2i
lBIT3, ETC.')

DO 60.) J=1,NPLOT
600 PRINT6114,XMTPLT(J),FPL0T(J),(P*4PLOT(J, 1J,11tNJ
6f',4 FORMAT(' ',T2,17,Tl5,0I6.8,T39,8I9)

PUNCHIVr5,MAXRIT
1105 FORMAT(17,T73,'MAXBIT')

PUNCH 1135,N
1135 FORMAT(I1,T73,0N')

PUNCHilO! ,M
1101 FORMAT( 11,T73, 'M')

PUNCH 1136*NROWS
1136 FORMAT(17,T73,'NROWS')

PUNCH1137 ,NCOL
1137 FORMAT(17,T73,'NCOL')

DO 1566 J=1,N
1566 P[UNCHI103,j,(GFN(1vJ),I -1.M)

PUNCHI IC', DELTA
11-17 FORMAT(13,T73,lfDELTA')

PU)NCHI1'9, STUN
1109 FORMAT(Dl5.7,T73,'S/N')

P UfC H3 0"0,N XMT D
Y. 0%7 FORMAT(l2,9T73,'NXMTD')

PUNCH3 It;, I XSOUR
3100 FORMAT(120,T73,$IXSOURI)

DO 1567 J=1,N
1567 PUNCH32A,TXNO S( J) J
3200 FORMAT(120,T71,' IXNOIS( ,1,1 )')

PUNCH3300, ERRORS
3300 I-ORiAT(2,T73,*ERRORS')

PUNCH 340U, N TOTAL
3400 FOPMAT( 120,vT73,'NTOTAL')

DO 1569 J1,iN
1569 PUNCH31IVilJ,(PNOISE(IOUT+I,J),I=1,DELMI)

3101 FORMATLT73, 'PNOI40SE',11,rl,7211)
PUI1'CH3 25 1, CPRSOUR( IOUT+1), 1=1, DELMl)

32(11 FORMATIT73,'PRSOURI,T1,7211)
DO 1570C J=1,N

157G PUNCH35SJO,PARCK(J),J
3500 FORMATE 12Q,T73, 'PARCK(,Il,l')

DO 4000 I=1,NSTATE
4000 PUNCH3002,GAMMA( I),!
3302 FORMAT(D23.1b,T73v'I=',I4)

00 4Cnl I=1,NSTATE
DO 40.)1 J=IDEPCP,NCOL

4001 PlUNCH3301,I,JvSURVIV(IJ)
3301 FORMAT(T70,'I=',149' J=' ,12,Tl, T2(i)

PUNCH340I,( SIFT2( I), I=,M)
3401 FORMAT(T73, 'SHIFT' ,TI,7211)

STOP
END
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TESTBT PRCGRAP
***TESTBIT***CHECKS VALUE CF ANY BIT IN A FLLL kCRC IN PAIN STCRAGE.
* RI--ADCR OF ARGUPENT LIST
* 0(1) ACOR OF %ORD
* 4(1) ACCR CF TESTBIT
* 8(1) ACCR FOR RETURN CCCE

L 2,C(1) LCAD ACCR CF kCRC TC BE SHIFTEC
L 4,4(1) LCAC ACCR CF TESTBIT
L CC(4) LCAC TESTBIT

LA .3rC SET FCR CCPPARE
L 4,C(2) LCAC TEST hCRC
LA 5,32 LCAC 32 FOR SUBTRACTICN
SA 5,0 FINC CCVPLEVENT
SLL 4,C(5) SHIFT SC TEST BIT IS IN TFE SIGN PCSITICN

CR 4,3 CCOPARE RESULTS AGAINST ZERC
BNL NCTNEG
LA 3,1 LCAC CNE IF NEGATIVE

NCTNEG ECU *
L 5e,(1) LGAC ACCR CF RETURN WCRO
ST 3,C(5) STORE BIT IN RETURN WCRD
STCP
ENC
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CCPYAR PRCGRAP
***COPYARAY***COPIES AN ARRAY THRCUGH THE USE CF THE PVCL INSTRUCTICh.
* INPUT:
*R1--ADCR OF ARGUMENT LIST
* 0(1) ACCR OF INPUT ARRAY
*4(1) ACCR OF CUTPLT ARRAY
* 8(1) ACCR OF NUMBER OF ROWS IN THE ARRAYS
* 12(1) ACCR CF NUMBER CF COLUMNS IN THE ARRAYS

CCPYARAY ECU *
L 2,4(1) ACCR CF ARRAYC
L 4,C(1) ACCR CF ARRAYI
L 6e(1l LCAC ACCR CF NeMBER CF RCkS
L 5912(1) LCAC ACCR CF NUMBER OF CCL MNS
L 5,C(5) LCAC NUMBER CF CCLUMNS
VH 5,2(6) PLLTIPLY NUPBER CF RCkS BY CCLUMhS
SLA 5,2 (ROkS * CCLLMNS) * 4
LR 395 CCPY LENGTF IN R3 FOR MVCL
MVCL 2,4 CCPY ARRAY
STOP
ENC
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SHIFT PRCGRAF
***CCPYRCWS***CCNTAINS THE LOGIC NECESSARY TC CCPY AND SHIFT

* THE SPECIFIC ROWS AS SPECIFIEC. CCPYRCWS WILL CCPY RCWI

* INTC RCWC AND ROWi, SHIFT THESE ROWS TC THE LEFT CNE BIT,

* AND SET THE RIGHTMOST BIT OF RCWC ANC ROWI TC ZERO AND CNE

* RESPECTIVELY.
* INPUT:
* RI--ADCR CF ARGUMENT LIST

* 0(1) ACOR OF INPUT ARRAY (ARRAYI)

* 4(1) ACDR OF CUTPUT ARRAY (ARRAYC)

S8(1) ACCR OF NUMBER OF RCWS

* 12(1) ACCDDR OF NUMBER CF COLUMNS

16(1) AOCR OF ROWI

* 20(1) ACCR OF ROWO

* 24(1) ACCR OF ROWI

CCPYROWS EQU *

LA 7,C ZERC CUT R7

L 12,8(1) LOAD ACCR CF NUMBER CF ROWS

L 12,0(12) LOAD NUMBER CF RCWS

SLA 12,2 MULTIPLY BY FOUR FCR CISPLACEMENT

L 6,C(1) LOAD ACCR CF ARRAYI

L 8#12(1) LOAC ACCR OF NUMBER OF COLUMNS

L 8,0(8) LOAD NUMBER CF CCLUMNS

L 2,4(1) LOAD ACCR CF ARRAYC

LR 3,8 COPY NUMBER CF CCLUMNS FROM R8

BCTR 3,C SUBTRACT CNE FRCM NUMBER CF COLUMNS

L 4,8(1) LOAC ACCR CF NUMBER CF RCWS

PH 3,2(4) COMPUTE ROWS*(CCLUMNS-1)

LR 9,3 **
LR 10,3 * * COPY RCWS*(CCLUVNS-1)

LR 11,3 ***
L 3,16(1) ***
L 4,20(1) * * LCAC ADDRS CF RCWIRCW,ANC RCOW

L 5,24(1) ***
L 3,C(3) **
L 4,C(4) * * LCAC ROWIRCWO,ANC RCW1

L 5,C.(5) **
BCTR 3,0 ***
BCTR 4,C * * CECREMENT EACH BY CNE

BCTR 5,C *
AR 9,3 **
AR 10,4 * * ACC PROCUCT AND ROWS MINUS ONE

AR 11,5 ***

SLA 9,2 *
SLA 10,2 * * MULTIPLY BY 4 TC COBTAIN DISPLACMENT

SLA 11,2 ***
AR S, f*6
AR 1C,2 * * CCMPUTE ACTLAL ADDCRESSES

AR 11,2 **
MVC 0(4,10),0(9) COPY LAST WCRC CF RCWI TC ROWO

LA CC INPUT FCR RCW0

LR 2,10 INPUT FCR SLICE

BAL 14,SLICE BRANCH TC SLIDE

MVC 0(4,ll1)C(9) COPY LAST WORD CF RCWI TC RCW1

LA 0,1 INPUT FCR.ROW1

LR 2,11 INPUT FCR SLICE

BAL 14,SLIDE BRANCH TC SLIDE

BCTR 8,C CECREMENT COLUMN COUNT BY CNE

CR 8,7 COMPARE COLUMN COUNT AGAINST ZERC

BE THRU IF ECUAL END
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PART C



CECACCR EQU *
SR 9,12 ***
SR 10,12 * * CECREMENT ACDRS BY RCW MEMBER DIST
SR 11,12 ***
MVC 0(4,10),0(9) CCPY NEXT RCkI MEMBER TO RCWO
LR 2,10 SET UP FCR SLICE--CARRY BIT ALREACY SET
BAL 14,SLICE BRANCH TO SLICE
MVC 0(4,11),0(10) COPY ROWO MEMBER INTO RClI MEMBER
BCT 8,CECADCR DECREMENT ANC TEST COLUMN COUNT

THAU ECU *
STCP

ARGLSTAC CS F
***SLICE***SHIFTS CNE FULL WORD IN MAIN STORAGE TC THE LEFT OCNE BIT
* SETTING THE RICHTMOST BIT IN THE WOCRC AS INCICATED BY RC. THE
* ACCR CF THE WCRC TO BE SHIFTED IS CONTAINEC IN R2 ANC THE CARRY
* CVER BIT IS PLACED IN RC.

SLICE EQU *
STM 3,49SAVEREGS SAVE WORKING REGISTERS
LA 4,C LCAD ZERC FCR CCPPARE
L 3,C(2) COPY WORO TC BE SHIFTED
CR 3,4 CHECK FCR CARRY
SLL 31l SHIFT OVER CNE BIT
BNL CARRYC BRANCH ACCORDINGLY

CARRY1 EQU *
LA 4,1 WORD NEGATIVE, THEREFORE SET CARRY BIT

CAPPYC AR 3,0 SHIFT IN BIT BY ACDITICN
LR 0,4 STORE CARRY VALUE
ST 3,0(2) REPLACE SHIFTEC WCRC
LM 3,4tSAVEREGS RESTORE kCRKING REGISTERS
BR 14 RETURN TO CALL--BAL 149SLIDE

SAVEREGS CS 2F
END
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SHORT CONSTRAINT LENGTH RATE 1/2 'QUICK-LOOK' CODES

I. Introduction:

A binary convolutional code of constraint length K and rate R = is com-

pletely specified by a set of two generators which in transform notation have

the form

i(j) ( j) (j) 2  (j) K-1G ) (D) = g ) + g0 1 ) D + g2  
) D2 + + gK-1 D (j =1, 2)

with coefficients from GF(2). (Throughout we assume the codes are nondegener-

ate, i.e., at least one of g0 (1) and g (2) are at least one of gK-1 (1) and

gK-1(2) are one). If

I (D) = i0 + i D + i2 D
2 +

is a sequence of binary information digits, then the result of applying I(D)

to the encoder is

T ) (D) = I(D) GW (D) = to) + t1 D+t D + . . . (j = 1, 2)

so that for each information digit ik the encoder produces a block of two digits

[tk(1), t k(2) ] that are functions of ik and the previous K-1 information digits.

The linear sequential circuit that performs this operation consists of a shift

register whose K stages are connected to two modulo-2 adders in accordance with

the coefficients of G(1) (D) and G(2) (D), respectively. The outputs of the

adders at time k then constitute the block [tk(1), tk(2)]. For convenience we

denote the sequence of these blocks by T(D).

In certain situations such as system check-out it is desirable to be able

to recover the information sequence from the encoded sequence. Massey and Sain

(1968) have shown that this is possible if and only if the code is noncatastrophic,

i.e., if and only if

gcd [G(1 ) (D), G(2) (D)] = D'
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for some k 0. In this case, there always exists a linear sequential circuit

that produces I(D) with a delay of exactly L digits for any integer L z Z and

it is completely described by two generator polynomials p(1) (D) and p(2) (D)

that satisfy

P(1) (D) G( ) (D) + P(2) (D) G(2) (D) D

To illustrate these ideas we consider the code

G(1) (D) = 1 + D + D2 + D3 + D6

G(2) (D) = 1 + D2 + D3 + D5 + D6

This code has a constraint length K = 7 and its circuit realization is shown

in Figure 51. If the input sequence is

1 0 0 1 1 0 1 0 1

then T(1) (D) and T(2) (D) are given by

1 1 1 0 0 0 0 0 0

and

1 0 1 0 1 0 0 1 1

respectively, and the encoder output sequence will be

1 1 1 0 1 1 0 0 0 1 0 0 0 0 0 1 0 1 .. .

Since G(1) (D) and G( 2 ) (D) are relatively prime, an inverse circuit with delay

zero exists and we may easily prove that p( (D) and p(2) (D) are given by

p(1) (D) = 1 + D + D2 + D3 + D4

P(2) (D) = D2 + D

Two versions of the circuit realization are shown in Figure 52.

Suppose now that the encoder output sequence T(D) is transmitted over a

noisy channel prior to its inversion. Then, of course, the resulting sequence

I(D) will generally not be a perfect match of the original information sequence
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I(D). In fact, Massey and Costello (1971) have shown that over the binary sym-

metric channel and at high signal-to-noise ratios the probability of an error in

I(D) is related to the probability of error in the channel by

p^ = APBSC

where A is the error amplification factor given by

A = W[P ( 1) (D)] + W[P(2) (D)]

and W[P( ) (p)] denotes the Hamming weight of p(i) (D).

T ( 1) (D)

I (D) I I I II It T(D)

ST(2 ) (D)

FIGURE 51. ENCODING CIRCUIT FOR THE CODE

1 1 1 1 0 0 1

1 0 1 1 0 1 1

In our example above A has the value 7, so that an error in I(D) is seven

times more likely than an error in the channel. This is quite obvious from

Figure 52b. For a single error in the channel will, as it propogates through
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T(1) (D)

+ 1(--- D

T(2) (D) II

FIGURE 52a. INVERSE CIRCUIT FOR THE CODE

1 1 1 1 0 0 1

1 0 1 1 0 1 1

T(D)

1(D) = ODD NUMBERED DIGITS

FIGURE 52b. ALTERNATE INVERSE CIRCUIT FOR THE CODE

1 1 1 1 0 0 1

1 0 1 1 0 1 1
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the circuit, produce 7 errors in the output of the adder, assuming that the

channel errors are spaced far enough apart.

For low signal-to-noise ratios the simple reasoning leading to (1) no

longer applies and the value of the error amplification must be determined

empirically. Figure 53 shows the 'result for the code in the above example.

Consider next the system configuration of Figure 54.

At high signal-to-noise ratios a well designed decoder will be able to

correct the overwhelming majority of the errors introduced in the channel and

deliver an essentially perfect copy of I(D). If we then compare this output

with that of the encoder inverse we obtain an indication of the signal-to-noise

ratio in the channel.

With the binary symmetric channel, for example, we can get a good estimate

of P by computing the ratio of the number of ones in which the outputs of the

decoder and the encoder inverse differ to the total number of digits processed.

Using (1) we are then able to determine the value of PBSC"

The surprising fact is that this scheme also works for low signal-to-noise

ratios, where the decoder output also includes errors, and produces a one-to-one

relationship between pBSC and the measured quantity, which we denote by PBSC

Figure 55 shows the simulation results for the code in our previous example,

the binary symmetric channel and a 32 bit path length Viterbi decoder.

From Figure 53 it is clear that if one attempts to reconstruct the original

information sequence at the channel output without benefit of decoding, it is

desirable to have a code with as low a value of error amplification as possible.

The best in this regard are the socalled systematic codes for which one of the

p(i) (D) is one and the other equals zero, resulting in A = 1. Unfortunately,

the error correcting capability of these codes is markedly inferior to that of

certain nonsystematic codes when used in conjunction with sequential or maximum

likelihood decoding algorithms.
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7.0

6;0

5.0

4.0

I-

zo 3.0

-

S 2.0

1.0

0.0
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

Eb/No (db)

FIGURE 53. ERROR AMPLIFICATION FACTOR FOR THE CODE

1 1 1 1 0 0 1

1 0 1 1 0 1 1

I(D) ~- ENCODER ' CN O ISY LDECODER +
CHANNEL I I(D

INCODER
INVERSE

FIGURE 54. CHANNEL NOISE MEASURING SYSTEM
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0.6

0.5

CHANNEL: BSC

DECODER: VITERB1 - 32 BIT PATH LENGTH

0.4

0.3

0.2

0.1

0.0
0.0 0.1 0.2 0.3 0.4 0.5

PBSC

FIGURE 55. MEASURED VERSUS ACTUAL CHANNEL BIT ERROR PROBABILITY FOR CODE

1 1 1 1 0 0 1

1 0 1 1 0 1 1
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For nonsystematic codes the lowest possible value of A is 2 and is attained

by the socalled quick-look codes [2]. Our purpose in this note is to investi-

gate their relevant characteristics and in the process we obtain a number of in-

teresting and practically useful results. Since our primary motivation is the

application of quick-look codes to Viterbi decoding, we restrict consideration

to constraint lengths less than eight.

II. Quick-Look Codes:

We define a rate 1 quick-look code as any code in which the two generators

differ in exactly one coefficient. Then

G( 1) (D) + G(2) (D) = DL

for some 0 < L < K - 1 and an inverse circuit with delay L and error amplifica-

tion factor A = 2 is given by

p() (D) = p(2) (D) = 1

This, of course, amounts to nothing more than the modulo-2 addition of

T( ) (D) and T ( 2 ) (D). Hence the word 'Quick-Look' [2].

Since we are dealing with nondegenerate codes only, it follows easily that

all quick-look codes have

gcd [G(1 )  (D), G(2) (D)] = 1

Thus, there always exists an inverse with delay zero, which is generally dif-

ferent from the quick-look inverse if L > 0.

For example, when L = 1, the zero delay inverse takes the form

p(i) (D) + G(j )  (D) (i # )
D

and its error amplification factor at high signal-to-noise ratios is
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A = W[G (1) (D)] + W[G (2 ) (D)] - 2

For L = 2 the zero delay inverse becomes

p(i) D) = + (1 + a1D) G
(j ) (D)

P (D2 j

Here A has the same value as above if al = 0 and is a function of the coefficients

of G( ) (D) and G(2) (D) if al = 1.

As a concrete example, consider the constraint length 5 code

G( ) (D) = 1 + D + D2 + D4

G(2) (D) = 1 + D + D

Clearly, L = 2 and the quick-look inverse circuit takes either of the forms in

Figure 56.

The inverse circuit with zero delay is given by

p(I) (D) = 1 + D2 + D3

P(2) (D) = D + D2 + D3

and Figure 57 shows the two alternate configurations for this case. Note that

the error amplification factor increases from 2 to 6 over the quick-look

inverse.

III. Maximum Free Distance Quick-Look Codes:

One commonly accepted measure of the performance of a convolutional code

in conjunction with sequential or maximum likelihood decoding algorithms is

free distance. For the codes under consideration here this is simply the smallest

nonzero number of ones in the set of semi-infinite output sequences of the

encoder.

Our objective is to find quick-look codes of constraint lengths 3 : K < 7,

with as large a free distance as possible.
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T( ) (D)

+ D 21(D)

T(2) (D)

T (D)

--o I(D) = DIGITS 5, 7, 9, . . .

FIGURE 56. QUICK-LOOK INVERSE CIRCUITS FOR THE CODE

1 1 1 0 1

1 1 0 0 1

To narrow the search for such codes we first note that the maximum free

distance of any rate noncatastrophic convolutional code is bound by

K + 2; 3 <K 6

f K + 3; K= 7

and that there always exists a code for which equality holds (Larsen, 1973).

Second, since the input sequence 100 . . . produces as output sequence

from each modulo-2 adder of the encoder the coefficients of the respective

generator polynomial, the free distance of any code is evidently bounded by

df < W[G ( 1) (D)] + WIG ( 2 ) (D)]

Finally, if G*(D) denotes the reciprocal polynomial of G(D), then the codes

G( ) (D), G(2) (D)

and

(2)G(1)*(D), G (2)*(D)
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T( 1) (D)

(+ 1 (D)

T (D)

S (D) = DIGITS 1, 3, 5,

FIGURE 57. ZERO DELAY INVERSE CIRCUITS FOR THE CODE

1 1 0 1

1 1 0 0 1
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are equivalent. This follows readily from the relation

[I (D) G (D)]* = 1* (D) G* (D)

and the fact that the weights of a polynomial and its reciprocal are identical.

We can, therefore, restrict our search to quick-look codes with delay

L I [K/2] and an appropriate number of ones in the generator polynomials (the

square brackets denote the integer part).

Now let L = 0. Then each 1 in the input sequence I(D) will produce a 1

in the output sequence T(D) as it enters the encoder shift register and in ad-

dition the last 1 in I(D) will produce two 1's in T (D) as it enters the last

stage of the encoder. Therefore,

W[T (D)] ; 2 + W[I (D)]

and it follows that in testing whether a code has free distance less than df

only input sequences with fewer than df - 2 ones need to be considered.

Since Bahl and Jelinek (1971) have shown that without loss of generality

input sequences with zero-runs of length K - 2 or more may likewise be ignored,

it follows that the length of the input sequences that must be tested does not

exceed

(df - 4) (K - 2) + i

For L > 0, the first 1 in I(D) produces two 1's in T (D) as it enters the

encoder and another 1 as it enters the (L +.1)st stage of the encoder. Every

subsequent I in I(D) likewise produces a 1 in T(D) as it enters the (L + 1)st

stage. In addition, the last 1 in T (D) results in two l's in T (D) as it

enters the last stage of the encoder. Thus, the total number of ones in the

output sequence satisfies

W[T (D)] > 4 + W[I (D)]
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and we can restrict consideration to input sequences with fewer than df - 4

ones and length no larger than

(df - 6) (K - 2) + 1

Using these principles we tested all quick-look codes of constraint length

3 < K S 7. Table 3 summarizes our results. Note that for 3 < K s 6 the

best quick-look codes are comparable to the best general nonsystematic codes,

whereas for K = 7 the free distance of the best quick-look codes is one less

than the maximum achievable.

We also remark that the quick-look codes with L = 0 are uniformly inferior

to those with L > 0, a result that reinforces the notion that among the best

codes of a class there is always one whose generators possess complementarity

(Bahl and Jelinek, 1972).

Although under normal circumstances free distance is a good indicator of

a code's error correcting capability, this measure nevertheless depends only

on the code and thus completely ignores the nature of the channel and the

decoding algorithm. Even with the channel and decoder fixed, differences in

the weight spectra of two codes with the same free distance can give rise to

different decoder bit error rates.

For these reasons we have computed the decoder bit error rates of selected

codes from Table 3 used over the binary symmetric channel and in conjunction

with a Viterbi maximum likelihood decoding algorithm of 32 bit decoder path

lengths. The results are presented in Figure 58. Note that these quick-look

codes compare favorably to the best nonsystematic codes obtained in [7] and

the complementary codes given by Jelinek and Bahl (1969).

In Figure 59 we show the error amplification factor for the same set of

codes as above, as a function of the signal-to-noise ratio of a binary symmetric

channel.
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K Code # G(1)(octal) L df dfmax

3 1 7 1 5 5

4 2 17 1 6 6

3 33 1 7 7

4 35 2 7 7

5 67 1 8 8
6

6 75 1 8 8

7 153 1 9 10

8 163 1 9 10

9 127 2 9 10

10 135 2 9 10
7

11 165 2 9 10

12 171 2 9 10

13 175 2 9 10

14 133 3 9 10

Best Rate 1/2 Quick-Look Codes

TABLE 3

Finally, Figure 60 presents the relationship between actual and measured

channel bit error rates for the same codes, the binary symmetric channel and a

32 bit path length Viterbi decoder.

94



10-2

10
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S2.0
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L- 1.5

S 0.0
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Eb/No (db)

FIGURE 59. ERROR AMPLIFICATION FACTOR FOR CODES #1, 2, 3, 7

0.12
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0.04 - CHANNEL: BSC
DECODER: VITERB1 - 32 BIT PATH

LENGTH
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0.0 I I I I I
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FIGURE 60. MEASURED VERSUS ACTUAL CHANNEL BIT ERROR

PROBABILITY FOR CODES #1, 2, 3, 7
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